Так как в параллелограмме противолежащие стороны попарно параллельны и равны, то в параллелограмме MKPT MK=PT и KP=MT
Так как KP=MT, то диагональ MP является секущей, которая пересекает две параллельные прямые, тогда:
∠PMT = ∠KPM как накрест лежащие углы.
Так как МР является бисектрисой ∠M, то:
∠KMP = ∠PMT
Таким образом у нас получается :
∠PMT = ∠KPM = ∠KMP
В △MKP ∠KPM = ∠KMP, таким образом △MKP равнобедренный, тогда: МК=КР=Х
Так как MK = PT, то PT = KP = x, а также KP = MT = x.
В паралекграмме МКРТ все стороны равны х. Его периметр тогда будет равнятся:
P = MK + KP + PT + MT = x + x + x + x = 4×х
Теперь решаем:
4×х=60
х=60÷4
х=15
ответ: каждая сторона параллеграмма равна 15 см
проблема состояла в том, что другие предложенные решения содержали тригонометрические выкладки, которые не под силу 9-класснику...
потому "родилась" идея использовать поворот (материал 9 класса)
угол АКВ -это внешний угол для треугольника DKA, значит, сумма углов KDA+KAD = 60°, это вписанные (для окружности) углы, т.е. сумма дуг, на которые опираются эти углы ∪ВА+∪CD = 120°
и мы никогда не найдем отдельные слагаемые (эти углы), т.к. данных не достаточно, потому и возникла мысль использовать именно дугу, равную сумме дуг... т.е. нужно повернуть треугольник с вершиной в центре окружности (центральным углом, соответствующим дуге АВ) с целью получить дугу в 120° (точки С и В совпадут)
получим 4-угольник с двумя известными сторонами (22 и 34) и
двумя известными (и даже равными) углами по 120°...
остальное по теореме косинусов...