Боковые ребра прямоугольного параллелепипеда перпендикулярны основанию, значит АА₁⊥(ABC). BD лежит в плоскости АВС, значит АА₁⊥BD. Диагонали квадрата перпендикулярны, поэтому BD⊥AC. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости: BD⊥АА₁ и BD⊥AC, значит BD⊥АCC₁.
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.
Плоскость BB₁D₁ проходит через прямую BD, перпендикулярную плоскости АСС₁, значит BB₁D₁ ⊥ АСС₁.
Второй острый угол треугольника - 180-90-60=30°; В прямоугольном треугольнике, против угла в 30° лежит катет равный половине гипотенузы. 20/2=10 см; второй катет находим по т. Пифагора - √(20²-10²)=√300=10√3; площадь прямоугольного треугольника - произведение длин катетов деленное на два; 10*10√3/2=50√3 ед².
Второй После того как нашли длину катета можно сразу найти площадь треугольника через две стороны и угол между ними. Одна сторона - 20 (гипотенуза), другая сторона - 10 (катет лежащий против угла 30°). Значит угол между катетом и гипотенузой - 60°; площадь треугольника равна произведению длин сторон умноженную на синус угла между ними деленное на два. Синус 60°=√3/2 - табличное значение. площадь - 10*20*√3/(2*2)=50√3 ед².
В равнобедренном треугольнике высота на основание (она же и биссектриса и медиана угла против основания) равна: Н = √(а² - (в/2)²) = √(100 - 36) = √64 = 8. Точка пересечения биссектрис лежит на высоте Н на расстоянии ДО₂: ДО₂ = (в/2)*tg(A/2). tg(A/2) = √((1 - cos A) / (1+cos A)). cos A = (b/2) / c = (12/2) / 10 = 6 / 10 = 3 / 5. tg(A/2) = √((1-(3/5)( / (1+(3/5)) =√((2/5) / (8/5)) = √(1/4) = 1/2 Тогда ДО₂ = 6*(1/2) = 3. Медианы пересекаются в точке О₁, расстояние ДО₁ = (1/3) *Н = 8/3. Отсюда расстояние между точкой пересечения биссектрис и точкой пересечения медиан равно:3 - (8/3) = (9-8) / 3 = 1 / 3.
BD лежит в плоскости АВС, значит
АА₁⊥BD.
Диагонали квадрата перпендикулярны, поэтому
BD⊥AC.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости:
BD⊥АА₁ и BD⊥AC, значит BD⊥АCC₁.
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.
Плоскость BB₁D₁ проходит через прямую BD, перпендикулярную плоскости АСС₁, значит
BB₁D₁ ⊥ АСС₁.