1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О. ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса. ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС. ΔАВО=ΔСВО , значит АВ=ВС=2,7 см. Периметр равен 2(2,7+2,9)=2·5,6=11,2 см. 2) Обозначим длину сторон: х; х-8: х+8; 3(х-8). По условию: х+х-8+х+8+3(х-8)=66, 6х-24=66, 6х=90, х=15. Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см. 3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85° Значит ∠АВD =180-85-30=65°. ∠АВС=∠АВD+∠СВD=65°+65°=130°. Проведем другую диагональ АС. ΔАВС по условию равнобедренный: АВ=ВС. Значит углы при основании равны (180-130):2=25°. ∠САD=85-25=60°. Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD. Углы четырехугольника: 95°, 50°, 130°, 85°.
ΔAOD - равнобедренный => AO=DO
∠BAC=∠CDB
ΔBAO имеет общую сторону с ΔAOD
ΔCOD имеет общую сторону с ΔAOD
Следовательно ΔBAO и ΔCOD имеют AO=DO
Рассматриваемые треугольники соприкасаются с боковыми сторонами треугольника и имеют равный угол отклонения от них ∠BAO=∠CDO
Из чего можно сделать вывод, что ∠BOA=∠CОD.
Т.к. в ΔBAO и ΔCOD:
1)AO и OD выступают боковыми сторонами равнобедренного треугольника из чего следует, что они равны, а значит это равносильно и для ΔBAO и ΔCOD.
2)На основе пересечения данных по условию углов и свойств равнобедренного треугольника следует, что ∠BOA=∠CОD
3)Т.к. ∠BAO=∠CDO и ∠BOA=∠CОD делаем вывод, что и ∠ABO=∠DCO
А значит и AB=CD