Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²