Пусть в треугольнике ABC угол A равен a, угол C равен b, проведены биссектрисы AD и CE, которые пересекаются в точке O (см. рисунок). Рассмотрим треугольник AOC. Сумма его углов равна 180 градусам, тогда угол AOC равен 180-1/2BAC-1/2BCA=180-DAC-ECA=180-1/2(a+b). Угол, под которым пересекаются две прямые - это наименьший из углов, которые получаются при их пересечении. Докажем, что угол EOA будет меньше угла AOC, тогда угол EOA - угол, под которым пересекаются биссектрисы. Действительно, угол EOA является смежным с углом AOC, тогда он равен 1/2(a+b). Так как a+b<180, 1/2(a+b)<90 и 1/2(a+b)<180-1/2(a+b), то есть, какими бы ни были углы a и b, угол EOA всегда будет меньше угла AOC. Окончательный ответ - 1/2(a+b).
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см