Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
ответ: Р = 240 см.
Объяснение:
Рассмотрим 4-угольник ANCM:
Угол NCM = 360 - угол MAN - 90 - 90 (так как AN,AM - высоты) = 360 - 180 - 60 = 120 градусов, причём по свойствам ромба угол NCM равен углу BAD.
Теперь рассмотрим сам ромб. Так как его тупые углы нам известны, то можно найти острые углы:
Угол ADC равен углу ABC и равен (360 - 120 -120)/2 = 120/2 = 60 градусов.
Рассмотрим треугольник ADM. Он прямоугольный с углом AMD = 90 градусов (АМ - высота). Найдём угол DAM:
Угол DAM равен (180 - 90 - угол ADM) = (90 - угол ADC) = (90 - 60) = 30 градусов. Катет против угла в 30 градусов равен половине гипотенузы, то есть DM = 1/2 AD => AD = 2DM = 2 * 30 = 60 см.
Так как в ромбе все стороны равны, то Рромба = 4 * AD = 4 * 60 = 240 см.