Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
3.В параллелограмме сумма 2-х соседних углов= 180 гр.Делаем вывод,что нам дана сумма противоположных углов.150/2=75 гр один угол.По указанному выше свойству 180-75=105 гр-второй угол.ответ:75,75,105,105 4.Это параллелограммы,т.к. АB||KL,АК||BL и KL||CD ,KD||LC.Противоположные стороны попарно параллельны,это признак параллелограмма. 3.Пусть один из углов=х,тогда другой будет 3х. х+3х=180.4х=180 х=45,3х=135.ответ:45,45,135,135 4.В данном четырехугольнике диагонали равны диаметру,значит,равны между собой.Точкой пересечения делятся пополам.Это признак прямоугольника. 3.Пусть одна из сторон х.Периметр=2х+2*8=36 2х=20 х=10 ответ:8,10,10 4.В данном четырехугольнике диагонали равны диаметру и равны между собой,пересекаются под прямым углом и точкой пересечения делятся пополам.Это признак квадрата.