даны две пересекающиеся в точке О прямые AC и BD то что сумма углов АОВ и DOC равняется 140 градусов Найдите градусную меру углов АОDи BOC и запишите решение и ответ
Обозначим трапецию как ABCD. Сторона перпендикулярная основаниям АВ, ВС - верхнее основание, AD - нижнее основание, CD - большая боковая сторона. Опустим перпендикуляр из вершины С к основанию AD и отметим точку пересечения как Е. Получили прямоугольный треугольник СЕВ. По теореме Пифагора находим СЕ СЕ²=CD²-DE² DE=AB-AE (а АЕ=ВС, так как трапеция прямоугольная) DE=17-5=12 см CE²=15²-12²=81 см Теперь из треугольника АВС можем найти диагональ АС по теореме Пифагора: АС²=АВ²+ВС² AB=СЕ, поэтому можем записать АС²=АВ²+СЕ² АС²=81+5²=81+25=106 АС=√106
В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания 4,5. Найдите высоту. Сделаем рисунок. Пусть это будет пирамида МАВС. Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника). Радиус описанной окружности можно выразить через сторону треугольника R=a/√3 Тогда высоту пирамиды МО найдем по т. Пифагора: МО²=МС²-ОС² МО²=49- а²/3 МО²=(147-20,25):3=126,75:3=42,25 МО=√42,25=6,5
По теореме вертикальных углов < АОВ = < DOC, < AOD = < BOC.
140:2=70° - <АОВ
180-70=110°- <АОD
ответ:<АОD = <BOC = 110°.