в параллелограмме ABCD диагонали пересекаются в точке O докажите Докажите что Докажите что треугольник fkl вершинами которого являются середины отрезков oa AB AC и AD параллелограмма
Вариант 1 иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник. вариант 7 тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство х+7x>49x x+7x-49x>0 -57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя. кажется, все верно посчитано) Ура!)
Построение: Отрезки АВ и ВМ проводим, так как их концы лежат в одной плоскости. Так как сечение пересекает параллельные плоскости по параллельным прямым, то сечение будет проходить через прямую ММ1 || AB, где М1 - середина ребра А1D1. Точки АМ1 соединяем, так как они лежат в одной плоскости.
Анализ: В сечении получен параллелограмм АВММ1 (противоположные грани куба параллельны). Докажем, что это прямоугольник. Так как АВ и ВС - перпендикулярные прямые (ребра куба) и АВ и ВВ1 - перпендикулярные прямые (ребра куба), то прямая АВ перпендикулярная плоскости ВВ1С1С, а значит и любой прямой, лежащей в ней, в том числе и прямой ВМ. Значит угол АВМ=90 и в сечении лежит прямоугольник.
иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник.
вариант 7
тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство
х+7x>49x
x+7x-49x>0
-57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя.
кажется, все верно посчитано)
Ура!)