Объяснение:1. Две прямые называются параллельными, если они
г) не пересекаются на плоскости
2. Две прямые параллельны, если при пересечении их секущей
г) внутренние накрест лежащие углы равны
3.Две прямые параллельны, если при пересечении их секущей
в) сумма внутренних односторонних углов равна 180 градусов;
4.Две прямые параллельны, если при пересечении их секущей
а) соответственные углы равны;
5)Сколько параллельных прямых можно провести через точку не лежащую на данной прямой
б) одну;
6)Две прямые пересечены секущей. Чему равна сумма внутренних односторонних углов, если внутренние накрест лежащие углы равны?
а) 180°
7) Две прямые пересечены секущей. Внутренние односторонние углы в сумме составляют 180 градусов, а один из соответственных углов равен 36 градусов. Чему равен второй из соответственных углов?
г)36°
8). Сумма внутренних накрест лежащих углов при параллельных прямых и секущей равна 220^0. Чему равны эти углы?
в)110°
9). Один из внутренних односторонних углов при параллельных прямых и секущей равен 50 градусов. Найдите второй внутренний односторонний угол. Отв: 180°-50°=130°; Отв: 130°
етрия. 8 класс. тест 4. вариант 1.
в δ авс ∠асв = 90°. ас и вс — катеты, ав — гипотенуза.
cd — высота треугольника, проведенная к гипотенузе.
ad — проекция катета ас на гипотенузу,
bd — проекция катета вс на гипотенузу.
высота cd делит треугольник авс на два подобных ему (и друг другу) треугольника: δ adc и δ cdb.
из пропорциональности сторон подобных δ adc и δ cdb следует:
ad : cd = cd : bd. отсюда cd2 = ad ∙ bd. говорят: высота прямоугольного треугольника, проведенная к гипотенузе, есть средняя пропорциональная величина между проекциями катетов на гипотенузу.
из подобия δ adc и δ аcb следует:
ad : ac = ac : ab. отсюда ac2 = ab ∙ ad. говорят: каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу.
аналогично, из подобия δ сdв и δ аcb следует:
bd : bc = bc : ab. отсюда bc2 = ab ∙ bd.
решите :
1. найти высоту прямоугольного треугольника, проведенную к гипотенузе, если она делит гипотенузу на отрезки 25 см и 81 см.
a) 70 см; b) 55 см; c) 65 см; d) 45 см; e) 53 см.
2. высота прямоугольного треугольника, проведенная к гипотенузе, делит гипотенузу на отрезки 9 и 36. определить длину этой высоты.
a) 22,5; b) 19; c) 9; d) 12; e) 18.
4. высота прямоугольного треугольника, проведенная к гипотенузе, равна 22, проекция одного из катетов равна 16. найти проекцию другого катета.
a) 30,25; b) 24,5; c) 18,45; d) 32; e) 32,25.
5. катет прямоугольного треугольника равен 18, а его проекция на гипотенузу 12. найти гипотенузу.
a) 25; b) 24; c) 27; d) 26; e) 21.
6. гипотенуза равна 32. найти катет, проекция которого на гипотенузу равна 2.
a) 8; b) 7; c) 6; d) 5; e) 4.
7. гипотенуза прямоугольного треугольника равна 45. найти катет, проекция которого на гипотенузу равна 9.
8. катет прямоугольного треугольника равен 30. найти расстояние от вершины прямого угла до гипотенузы, если радиус описанной около этого треугольника окружности равен 17.
a) 17; b) 16; c) 15; d) 14; e) 12.
10. гипотенуза прямоугольного треугольника равна 41, а проекция одного из катетов 16. найти длину высоты, проведенной из вершины прямого угла к гипотенузе.
a) 15; b) 18; c) 20; d) 16; e) 12.
a) 80; b) 72; c) 64; d) 81; e) 75.
12. разность проекций катетов на гипотенузу равна 15, а расстояние от вершины прямого угла до гипотенузы равно 4. найти радиус описанной окружности.
a) 7,5; b) 8; c) 6,25; d) 8,5; e) 7.
сверить ответы!