1. Две стороны треугольному равны 8 см и 4√3, а угол между и ними -30 °. Найдите неизвестную сторону треугольника. 1. Дві сторони трикутников дорівнюють 8 см і 4√3, а кут між и ними -30°. Знайдіть невідому сторону трикутника.
За теоремой косинусов , x-неизвестная сторона , x^2=8^2+(4корень из 3)^2 -2*8*4корень из 3* косинус 30 градусов ; x^2=64+48-64корень из 3 * корень из 3 разделить на 2 = 112-96=16 x=4 см
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник. 1) Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1 2) Если требуется найти синус угла между отрезками, то выразив KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4 Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2)) откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник. 1) Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1 2) Если требуется найти синус угла между отрезками, то выразив KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4 Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2)) откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))