1) пусть верхний угол равен 64 градуса , тогда т.к. треугольник равнобедренный углы при основании равны и каждый из этих углов равен (180-64) /2 = 58 градусов
2) решается по такому же принципу только будет (180- 108)\2 =36 градусов
3)Угол CFE = 180-72 =108 градусов . Следовательно угол FCE =180-(108+32) =40 градусов, так как СF биссектриса следовательно угол DCF=углу FCE =40 градусов , следовательно угол CDF =180-(72+40)=68 градусов
4) угол DFC = 102 градуса = углу PFK как вертікальные , тогда обозначим за х - угол DCF, а за у- угол CDF, тогда получится , что х+у = 72 градуса , значит х = 78-у --- угол KCE , так как СK -бісссектріса , а угол СKE получится 78+у , тода угол СEK= 180 -( 78+ у +78-у) = 34 градуса = угол CED
5) Угол B =180-( 75+35) = 70 градусов , так как BD -биссекстриса , то угол DBC= углу ABD = 35 градусов Следовательно треугольнік BDC - равнобедренный так как углу при основании равны .
В треугольнике АВС угол С=90 градусов, а угол А=30 градусов. На продолжении стороны ВС отложим отрезок CD=СВ, так, что точка С лежит между точками D и В. Соединим точки А и D. Треугольники АDС и АВС равны по первому признак равенства (DС=СВ, СА общая, угол С равен 90 градусов). Рассмотрим треугольник DАВ. Т. к. угол В=60 градусов (А+В+С=180, В=180-А-С), а угол D=углуВ=60градусов, то треугольник АDС - равносторонний. Из этого следует, что АС является не только высотой но и медианой, значит СВ=1/2DВ, а DВ в свою очередь =АВ (треугольник равносторонний). Значит СВ=1/2АВ.
N
М Р
уголМ=углуР=43градуса, т.к. по свойству равнобедренного треугольника, углы при основании равны.
уголN=180-43-43=94градуса (т.к. сумма углов треугольника =180градусов)
ответ: уголN=94градуса, угол Р=43градуса.