3. 1. Неверно. В равнобедренном треугольнике могут совпадать высота и медиана только из одной вершины. Из всех вершин они совпадают только в равностороннем треугольнике.
3.2. Верно. Если биссектриса делит противоположную сторону на равные отрезки, то она еще и медиана. Такой треугольник равнобедренный.
3.3. Верно. В равностороннем треугольнике высоты и биссектрисы, проведенные из каждой вершины, совпадают.
4. Биссектрисы треугольника пересекаются в одной точке. Следовательно, FО - биссектриса.
___
5. Если АF=FC, то BF- еще и медиана. Высота и медиана совпадают в равнобедренном треугольнике.⇒ ВС=ВА=7 см.
6. EF = FK, BF – высота⇒
Треугольник КВЕ равнобедренный. Решения нет, по одной только высоте найти основание треугольника нельзя.
7. Основание равно разности между периметром и суммой боковых сторон. 12-(5+5)=2 см.
Подробнее - на -
Объяснение:
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см