1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°. Найти: ∠D, ∠С, ∠В Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву). 2. Получим систему: ∠С+∠В=180° ∠С-∠В=48° Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый). ответ: 90°, 114°, 66° 2) Дано: ABCD - прямоугл., ∠АВО=36° Найти: ∠АОD Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА. 2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°. 3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72° ответ: 72°
Чертеж, я думаю, сумеешь сам нарисовать. Ромб с вершинами А, В, С, D Черти диагонали. Они пересекаются под прямым углом и в точке пересечения делятся пополам (как ромбу и полагается) . Диагонали АС и BD. Точка пересечения диагоналей О. Дано: АВ=50 см, т. к все стороны ромба равны, т. е. 200/4=50 Получились 4 прямоугольных треугольника, равных друг другу. S ромба = 4*S abo S abo=1/2AO*BO (площадь прямоугольного треугольника равна половине произведения катетов) Диагонами ромба относятся друг к другу как 3:4 Катеты треугольника АВО обозначаем как 3х и 4х (т. к. половины диагоналей тоже соотносятся друг с другом как 3:4) Т. О. получается прямоугольный треугольник с катетами 3х и 4х, и с гипотенузой 50 см. Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза = 50 см. Получаем: АВ=1/2АО*ВО 2500=(3х) 2+(4х) 2 2-это в квадрате 2500=9х2+16х2 2500=25х2 х2=100 х=10 S abo=1/2AO*BO AO=3x=30 см BO=4x=40 см S abo=1/2*30*40=600 S abcd=4*600=2400 ответ: площадь ромба = 2400 см2 Надеюсь, разберешься. Главное обозначь на чертеже вершины правильно. Кошмааар...
Найти: ∠D, ∠С, ∠В
Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву).
2. Получим систему:
∠С+∠В=180°
∠С-∠В=48°
Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый).
ответ: 90°, 114°, 66°
2) Дано: ABCD - прямоугл., ∠АВО=36°
Найти: ∠АОD
Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА.
2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°.
3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72°
ответ: 72°