2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12 2BC = 12 BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
Пирамида ABCDE, ABCD - основание, AED - грань, перпендикулярная плоскости основания. Проведем высоту EK к ребру AD. Она у нас по условию равна 6. Ещё проведем высоту EM к грани BC. Поскольку плоскость AED перпендикулярна плоскости основания, а все остальные грани наклонены к ней под одинаковым углом, то углы EDA=EAD=EMK = 60 градусов, и прямоугольные треугольники AEK, DEK и MEK равны. Из этих треугольников найдем сразу всё, чего нам не хватает: KM = KD = KA = EK/tg(60гр) = 6/√3. Площадь ABCD = KM*(AK+KD) = 2*(6/√3)^2 = 24. Объем пирамиды равен 1/3*24*6 = 48
ответ: S₆ = 42