Геометрия 7 класс стр 36 номер 105 Точки А и С лежат по одну сторону от прямой а. Перпендикуляры АВ и СD к прямой а равны. А)Докажите, что /_АВD= /_CDB; б) найдите /_АВС, если /_АDB=44°.
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
Середины сторон четырёхугольника являются вершинами параллелограмма (теорема Вариньона). (Док-во: рассмотрим треугольники, образованные сторонами трапеции и диагоналями как основаниями. Средняя линия треугольника параллельна основанию и равна его половине. Средние линии треугольников с общим основанием параллельны и равны. Если в четырехугольнике противоположные стороны попарно параллельны или равны, четырехугольник является параллелограммом.)
Диагонали равнобедренной трапеции равны. Диагонали данной трапеции перпендикулярны по условию. Если в четырехугольнике диагонали равны и перпендикулярны, параллелограмм Вариньона является квадратом. Отрезок, соединяющий середины оснований равнобедренной трапеции, является ee высотой. Отрезок, соединяющий середины боковых сторон трапеции, является ее средней линией. Высота и средняя линия данной трапеции равны как диагонали квадрата.