В данной задаче может быть два случая:
Как мы знаем, в равнобедренном треугольнике боковые стороны равны.
Значит, у нас есть два случая, если боковая сторона равняется 6 или 8.
1) Если боковые стороны равны по 6 см. Значит, основание равно 8 см. Периметр равнобедренного треугольника равен произведение двух боковых сторон плюс основание треугольника. Найдем периметр треугольника в первом случае:
6 · 2 + 8 = 20 см.
2) Если боковые стороны равны по 8 см. Значит, основание равно 6 см.
Найдем периметр:
8 · 2 + 6 = 22 см.
ответ: Первый случай периметр равен 20 см; Второй случай периметр равен 22 см.
. 1. Расстояния(длины сторон) определяются, по сути по теореме Пифагора. АВ = sqrt((-4+5)^2 + (3+4)^2) = sqrt(1+49)= sqrt(50) AC = sqrt((-1+5)^2 + (1+4)^2) = sqrt(16+25) = sqrt(41) BC = sqrt((-1+4)^2 + (1-3)^2) = sqrt(9 + 4) = sqrt(13) Все стороны РАЗЛИЧНЫ, поэтому треугольник ТОЧНО НЕ РАВНОБЕДРЕННЫЙ.(Нарисуй его и ты в этом убедишься!). 2. С(-1,1) радиус = СВ = sqrt(13), поэтому уравнение искомой окружности (х+1)^2 + (y-1)^2 = 13 3. Конечно НЕТ, даже и решать не стоит, потому что СА > больше радиуса 4. По известной формуле пишем это уравнение А(-5,-4) В(-4,3) у + 4 х +5 = 3 + 4 -4 + 5 то есть у + 4 = -7х -35 у = -7х -39, ну или 7х + у + 39 = 0 Вот и всё