Если набранное решение пропадет еще раз - значит, не судьба.
Известная формула длины биссектрисы (если надо показать, как это получается, обращайтесь :))
L^2 = a*b - x*y;
Здесь L = 12, a = 14; b = 35; пусть с - третья сторона, тогда x и y - отрезки, на которые биссектриса делит с.
Из известного свойства биссектрисы x = c*a/(a + b); y = c*b/(a + b); поэтому
L^2 = a*b*(1 - c^2/(a + b)^2); то есть
c^2 = (a + b)^2*(1 - L^2/(a*b));
Вычисления дают с^2 = 1695,4 (это точное значение, а не приближенное, если не понятно.)
Поскольку найдены все три стороны, задача в принципе уже решена. Но вычисления по формуле Герона в данном случае слишком громоздки. Проще найти угол напротив стороны с.
По теореме косинусов (обозначено t = cos(C))
с^2 = a^2 + b^2 - 2*a*b*t;
t = (a^2 + b^2 - c^2)/(2*a*b);
Подстановка значений дает t = - 7/25; (угол С тупой)
Отсюда sin(C) = 24/25;
Площадь S = a*b*sin(C)/2 = 14*35*(24/25)/2 = 235,2
Больше всего времени я потратил на поиски решения, использующего Пифагорову тройку 7,24,25, которая возникает по ходу решения. Увы - не вышло. Может, кто-то сообразит?
a) 1) Найдем координаты точки О. Для этого надо решить систему y=x+4 и y=-2x+1. Вычтем из первого уравнения второе, получим: 0=3x+3, x=-1 Подставим в первое y=-1+4=3. Итак, координаты центра О(-1; 3). 2) Найдем длину радиуса, используя координаты точки В, по формуле R^2=(2+1)^2 + (-1-3)^2 =9+16=25; 3) Запишем уравнение окружности
(x+1)^2 +(y-3)^2=25
б) У точек пересечения окружности с осью ОХ ординаты равны 0, поэтому подставим у=0 в уравнение окружности: (х+1)^2+9=25, x+1=+-4. Координаты этих точек (-4; 0) и (4; 0)
высота пирамиды h
h=4*sin60=4√3/2=2√3
проекция апофемы на основание 1/3 медианы m основания
1/3*m= 4*cos60=4*1/2=2, тогда m= 6
сторона основания а
a = m/cos30=6/(√3/2)=12/√3=4√3
площадь основания правильной треугольной пирамиды
So=a^2*√3/4= (4√3)^2*√3/4=12√3
объем пирамиды
V=1/3*So*h=1/3*12√3*2√3=24 см3
ответ V=24 см3