Дано:
SABC - пирамида
SО - высота
AB=8см
ã=45°
V-?
Объем пирамиды: V=1/3×Sосн×h
В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Найдем объем:
V=1/3×16√3×8√3/3=128/3 см³
2)Сумма смежных углов равна 180°, значит дана сумма вертикальных углов, а вертикальные углы равны. Значит каждый из них равен
270 : 2 = 135°, Смежный к ним угол равен 180-135=45°. ответ: 45°, 45°, 135°, 135°.
3) Можем сразу найти ∠4=360-220=140°, вертикальный к ниму угол также равен 140°. а смежные углы будет по 180-140=40°.
ответ: 140°, 140°, 40°, 40°.
4) ∠1=2х, ∠2=х+75.
∠1+∠2=180,
2х+х+75=180,
3х=105,
х=105/3=35°, ∠1=2·35=70°, ∠2=35+75=110°.
ответ: 70°, 70°, 110°, 110°.