М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Цоніма
Цоніма
04.02.2023 01:19 •  Геометрия

Равнобедренный и неравнобедренный треугольник.отличие?

👇
Ответ:
фриск12345
фриск12345
04.02.2023

В р/б треугольнике две стороны равны - это боковые стороны,

также в р/б треугольнике углы при основании равны,

биссектриса угла, проведенная к основанию является также высотой и медианой

В простом треугольнике таких свойств не наблюдается

4,4(69 оценок)
Ответ:
Cricetinae
Cricetinae
04.02.2023

в равнобедренном треугольнике боковые стороны равны и равны углы при основании,а для неравнобедренного треугольника это не характерно.У равнобедренного, но не равностороннего треугольника  одна ось симметрии. У неравнобедренного треугольника осей симметрии нет вообще.

4,5(42 оценок)
Открыть все ответы
Ответ:
Viksa1451
Viksa1451
04.02.2023

Дан куб с ребром равный 1. Найти угол между прямыми DA1 и BD1

ВD1 - диагональ куба. DА1 - диагональ его грани. 

Проведем через середину диагонали куба  прямую, параллельную DА1 и пересекающую ребра А1В1 и DС. Оба отрезка пересекутся в центре куба О и делятся им пополам. 

Стороны четырехугольника МD1М1В равны, т.к. являются гипотенузами треугольников с равными катетами, следовательно, этот четырехугольник - ромб, и его диагонали М1М и ВD1 пересекаются под углом 90º

Найти угол между МО и ВО можно и из ∆ ВОМ по т.косинусов. 

ВМ²=МО²+ВО² - 2МО•BO•cos∠BOM

cos∠BOM=(ВМ²-МО²+ВО²):(- 2МО•BO) 

МО=половине диагонали грани, 

ВО - половине диагонали куба. 

Вычислить длины сторон ∆МОВ не составит труда. Результат решения уравнения - косинус угла ВОМ=0, и это косинус 90º


Дан куб с ребром равный 1. найти угол между прямыми da1 и bd1
4,6(53 оценок)
Ответ:
maratuk2957oxmbqd
maratuk2957oxmbqd
04.02.2023
Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей.
Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам.
Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD.
Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63.
 Далее по теореме Пифагора находим второй катет - АО.
И находим расстояние. Это будет ОК-АО.
4,6(67 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ