надо построить прямоугольный треугольник, у которого катет равен половине гипотенузы. Проводим прямую, и- в любой точке - перпендикуляр к ней (вас должны были учить, как это сделать циркулем и линейкой). Потом откладываем по одной стороне прямого угла от вершины какой-то отрезок, и в полученной точке проводим окружность радиуса, в 2 раза большего длинны этого отрезка. Окружность пересечется с перпендикуляром, эту точку соединяем с центром окружности ,вот и угол 30 градусов...
Но можно - еще проще. Просто строим РАВНОСТОРОННИЙ треугольник - произвольный (берем отрезок произвольной длины, и проводим 2 окружности радиуса ЭТОЙ длинны с центрами в концах отрезка, точку пересечения соединяем с концами отрезка).
И любой из его углов делим пополам. То есть строим биссектрису любого угла. Это вас тоже должны были учить. На сторонах угла делаем засечки на равных расстояниях от вершины и проводим окружности с центрами в засечках. Вершину угла соединяем с точкой пересечения окружностей. Вот вам 2 угла в 30 градусов :)))
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
надо построить прямоугольный треугольник, у которого катет равен половине гипотенузы. Проводим прямую, и- в любой точке - перпендикуляр к ней (вас должны были учить, как это сделать циркулем и линейкой). Потом откладываем по одной стороне прямого угла от вершины какой-то отрезок, и в полученной точке проводим окружность радиуса, в 2 раза большего длинны этого отрезка. Окружность пересечется с перпендикуляром, эту точку соединяем с центром окружности ,вот и угол 30 градусов...
Но можно - еще проще. Просто строим РАВНОСТОРОННИЙ треугольник - произвольный (берем отрезок произвольной длины, и проводим 2 окружности радиуса ЭТОЙ длинны с центрами в концах отрезка, точку пересечения соединяем с концами отрезка).
И любой из его углов делим пополам. То есть строим биссектрису любого угла. Это вас тоже должны были учить. На сторонах угла делаем засечки на равных расстояниях от вершины и проводим окружности с центрами в засечках. Вершину угла соединяем с точкой пересечения окружностей. Вот вам 2 угла в 30 градусов :)))