Точка пересечения о серединная точка для обоих отрезков kf и bv как исполняет ца первый признак равенства треугольника kob и fov? Так как отрезки делятьца пополам, то 1. Сторона ob в треугольнике kob равна стороне... В треугольнике... 2. Сторона ko в треугольнике kob равна стороне... В треугольнике... Угол kobравен углу... Как вертикальный угол Треугольники равны по первому признаку равенства треугольников
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
Построим произвольно луч. 2 Отложим на луче отрезок, равный отрезку а. Для этого сделаем раствор циркуля равным длине отрезка а и проведем окружность с центром в начале луча этим радиусом . Получим точки точки В и С. 3 C центром в точке В проведем окружность радиусом равным длине отрезка в. 4 C центром в точке C проведем окружность радиусом равным длине отрезка c. Получим точку А . 5 Соединим точку А с точками В и С. Получим треугольник АВС.
Доказательство следует непосредственно из равенства сторон построенного треугольника заданным отрезкам.
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.