Объяснение: Обозначим вершины треугольника как А В С, а точки касания Д,К,М, причём Д лежит на АВ, К лежит на ВС; М на АС. Стороны треугольника являются касательными к вписанной окружности и, отрезки касательных, соединяясь в одной вершине равны от вершины до точки касания. Поэтому ВД=ВК=7см; АД=АМ=2см; СК=СМ=2см; отсюда следует что
АМ=СМ=2см. Теперь найдём стороны треугольника, сложив эти отрезки:
АВ=ВС=2+7=9см; АС=2+2=4см. Теперь найдём периметр треугольника зная его стороны: Р=9+9+4=22см
Итак, поехали. см. рисунок. Там сделали допостроения и обозначения. СВ=х АС=х-7 по т. Пифагора (х-7)²+х²=13² отсюда х=12 (отрицательное значение ж не подходит) х-7=5 Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было. А теперь самое интересное. Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6 Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым. Тогда ∠ОСМ=90-α-45=45-α теперь из Δ ОСМ имеем R=CM/cos(45-α) R=6/cos(45-α) подставляя формулу косинуса разности получаем cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем cosα=12/13 sinα=5/13 a cosα+sinα=12/13+5/13=17/13 cos(45-α)=17√2/26
ответ:. Р=22см
Объяснение: Обозначим вершины треугольника как А В С, а точки касания Д,К,М, причём Д лежит на АВ, К лежит на ВС; М на АС. Стороны треугольника являются касательными к вписанной окружности и, отрезки касательных, соединяясь в одной вершине равны от вершины до точки касания. Поэтому ВД=ВК=7см; АД=АМ=2см; СК=СМ=2см; отсюда следует что
АМ=СМ=2см. Теперь найдём стороны треугольника, сложив эти отрезки:
АВ=ВС=2+7=9см; АС=2+2=4см. Теперь найдём периметр треугольника зная его стороны: Р=9+9+4=22см