М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ыыыап
Ыыыап
22.07.2020 23:42 •  Геометрия

В прямоугольном треугольнике a
и
b
- катеты,
c
- гипотенуза.
Найдите
a
, если
b
=
0
,
4
и
c
=
0
,
5

👇
Ответ:
matvee1
matvee1
22.07.2020

ответ:/2- вторая Степень

А/2+ В/2= С/2

0,5/2=0,25

0,4/2=0,16

0,25-0,16=0,09

С=0,3

Объяснение:

4,4(52 оценок)
Открыть все ответы
Ответ:
ЛераТян2000
ЛераТян2000
22.07.2020

Дана правильная шестиугольная пирамида SABCDEF, в основании которой лежит правильный шестиугольник. Если стороны основания AB=BC=CD=DE=EF=18, то AO=BO=CO=DO=EO=FO=18. И тогда в прямоугольном треугольнике, например ΔSOD, образованном высотой SO, боковым ребром SD=15 и проекцией бокового ребра на основание DO, катет DO=18 будет больше гипотенузы SD=15. То есть, боковые ребра у пирамиды с такими размерами не сойдутся сверху в вершину S.

В условии задачи ОШИБКА! Такая пирамида не существует.

Тогда рассмотрим решение этой задачи в общем случае. Пусть боковые ребра SA=SB=SC=SD=SE=SF=b, стороны основания AB=BC=CD=DE=EF=AF=a.

Площадь боковой поверхности пирамиды состоит из шести равных равнобедренных треугольников.

ΔESD - равнобедренный, SE=SD=b, ED=a. Высота равнобедренного треугольника SK также является медианой ⇒ EK=KD=a/2

ΔSKD - прямоугольный, ∠SKD=90°. По теореме Пифагора

SD² = SK² + KD² ⇒ SK² = SD² - KD² = b² - (a/2)²

\boldsymbol{SK=\sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}}

S_{SED}=\dfrac{ED\cdot SK}{2}=\dfrac{a\cdot \sqrt{b^2-(\frac{a}{2})^2}}{2}

Площадь боковой поверхности пирамиды

\boxed {\boldsymbol {S = 6\cdot S_{SED}=3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}}}

===========================================

Допустим, боковое ребро пирамиды b=13, сторона основания a=10

S = 3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}} = 3\cdot 10\cdot \sqrt{13^2-\Big(\dfrac{10}{2}\Big)^2} =\\ \\ ~~~~=30\cdot \sqrt{169-25} =30\cdot 12=360

==============================================

Допустим, боковое ребро пирамиды b=41, сторона основания a=18

S = 3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}} = 3\cdot 18\cdot \sqrt{41^2-\Big(\dfrac{18}{2}\Big)^2} =\\ \\ ~~~~=54\cdot \sqrt{1681-81} =54\cdot 40=2160


Стороны основания правильной шестиугольной пирамиды равны 18, боковые ребра равны 15. найдите площад
4,7(58 оценок)
Ответ:
vitalicc
vitalicc
22.07.2020
Если действительно надо найти ВЕ, то зная, что АЕ - медиана, которая по определению делит сторону ВС пополам, имеем:ВЕ=ЕС=28,5см. Это ответ.
Но для чего нам даны стороны АВ и АС?

Скорее всего, в задаче требовалось найти медиану АЕ.
Тогда, зная, что медиана делит треугольник на два РАВНОВЕЛИКИХ, мы можем найти медиану АЕ через равенство площадей треугольников АВЕ и АСЕ, которые находим по формуле Герона: S=√[p(p-a)(p-b)(p-c)].
В нашем случае, для треугольника АВЕ полупериметр равен р=(78,2+АЕ)/2.
Для треугольника АСЕ полупериметр равен р=(68,7+АЕ)/2.
Тогда, освободившись от корня, имеем:
Sabe²=((78,2+АЕ)/2)*((78,2-АЕ)/2)*((АЕ-21,2)/2)((АЕ+21,2)/2)=
(78,2²-АЕ²)*(АЕ²-21,2²)/16.
Sace²=((68,7+АЕ)/2)*((68,7-АЕ)/2)*((АЕ-11,7)/2)((АЕ+11,7)/2)=
(68,7²-АЕ²)*(АЕ²-11,7²)/16.
Sabe²=Sace². Пусть АЕ²=х. тогда
(78,2²-х)*(х-21,2²)=(68,7²-х)*(х-11,7²)
Дальше сплошная арифметика:
78,2²х-х²-78,2²*21,2²+21,2²х=68,7²х-х²-68,7²*11,7²+11,7²х.
х(78,2²+21,2²-68,7²-11,7²)=78,2²*21,2²-68,7²*11,7².
х(9,5*146,9+9,5*32,9)=1657,84²-803,79².
1708,1*х=854,05*2461,63. Отсюда х=1230,815.
Тогда АЕ=√1230,815≈35,08
ответ: медиана АЕ≈35,1.
4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ