Если центр окружности соединить с вершинами данного треугольника, то он (данный треугольник) поделится на 3 новых треугольника. Теперь площадь исходного треугольника можно представить в виде суммы площадей 3х новых треугольников S= s1+ s2+ s3; Пусть стороны исходного треугольника равны x y и t, тогда x+ y+ t= 16; s1= x/2* h; s2= y/2* h; s3= t/2* h; у всех трёх треугольников h является радиусом (по свойству касательной к окружности). Если по условию x+ y+ t= 16, то x/2+ y/2+ t/2= 16/2= 8; S= s1+ s2+ s3= x/2* h+ y/2* h+ t/2*h= h(x/2+ y/2+ t/2)= 2*8= 16
ответ:S=12P⋅h,S=12⋅9⋅7√2=97√4
Объяснение:
найдем сторону основания правильной пирамиды по формуле a = R√3, a = √ · √ = 3
найдем периметр основания Р = 3·а, Р = 9
радиус вписанной в правильный треугольник окружности в 2 раза меньше радиуса описанной около этого треугольника окружности, т.е. R = 2r, тогда OP=3√2
из прямоугольного треугольника МОР по теореме Пифагора находим апофему МР: MP=MO2+OP2−−−−−−−−−−√,
МР=1+|3√2|2−−−−−−−−√=1+34−−−−−√=7√2
вычислим площадь боковой поверхности правильной пирамиды: S=12P⋅h,S=12⋅9⋅7√2=97√4