Итак, площадь параллелограмма можно найти по формуле h*a, где h - высота, a - основание, на которое опущена данная высота. Нам даны две высоты 6 и 10, и они опущены на разные стороны. При этом если мы подставим в формулу значения оснований и их высот, убедимся, что результат идентичен для обоих случаев. Обозначим за x боковую сторону. Тогда смежная сторона равна (48-2x)/2=24-x. Составляем уравнение:
Если обозначить за Х сторону основания нашей пирамиды, которое представляет собой равносторонний треугольник (т.к. пирамида правильная, и вершина проецируется в центр описанной окружности), то серединный перпендикуляр к стороне основания выразится как "корень квадратный из (x^2/3 - x^2/4)", или после преобразований x/(2 корня из3). А высота пирамиды через радиус описанной возле основания окружности, выражающийся как X/(корень из 3), и через боковое ребро, которое согласно условию составляет 35 корней из 3, выразится так: "корень квадратный из (3675 - x^2/3)". Отношение высоты пирамиды к серединному перпендикуляру даст выражение для тангенса угла между боковой гранью и плоскостью основания, который по условию равен 1,5. Записываем уравнение: слева - дробь,числитель - корень квадратный из (3675 - x^2/3)Знаменатель x/(2 корня из3)Справа - 1,5. Решая уравнение, находим: х = 84. ответ: 84 Остались вопросы? Задавайте в личку!
ответ: S = 90 см^2
Объяснение:
Итак, площадь параллелограмма можно найти по формуле h*a, где h - высота, a - основание, на которое опущена данная высота. Нам даны две высоты 6 и 10, и они опущены на разные стороны. При этом если мы подставим в формулу значения оснований и их высот, убедимся, что результат идентичен для обоих случаев. Обозначим за x боковую сторону. Тогда смежная сторона равна (48-2x)/2=24-x. Составляем уравнение:
6(24-x)=10x
144 - 6x=10x
144=16x
x=9(см) - боковая сторона
S=h*a= 10*9=90(см^2)