За кутами
Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2<a2+b2
Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2=a2+b2
Тупокутний- один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c2>a2+b2
За сторонами
Різносторонній - всі сторони різні
Рівнобічний- дві сторони рівні (називаються бічними, третя - основою)
Рівносторонній (правильний) - всі сторони рівні
Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини)
Висота - відрізок, який проведений з вершини трикутника перпендмикулярно до протилежної сторони
Бісектриса, відрізок, який проведено з вершини до протилежної сторони і який ділить кут навпіл. Бісектриси трикутника перетинаються в одній точці і ділять протилежну сторону на відрізки, пропорційні прилеглим сторонам трикутника (якщо АК - бісектриса трикутника АВС, то ВК:КС=АВ:АС)
Середня лінія трикутника - відрізок, який сполучає середини двох сторін трикутника. Середня лінія трикутника паралельна третій стороні трикутника і дорівнює її половині
Гіпотенуза - найбільша сторона прямокутного трикутника (лежить напроти прямого кута), катети - дві інші сторони прямокутного трикутника
Центр кола, описаного навколо трикутника, знаходиться в точці перетину серединних перпендикулярів. В прямокутному трикутнику він знаходиться на середині гіпотенузи
Центр кола, вписаного в трикутник, знаходиться в точці перетину бісектрис трикутника
Объяснение:
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.