Ну вы хотя бы градусы маленькой буквой о обозначали, а не 0. 1) Смежные углы в сумме дают 180°. Один 28°, другой 152° 2) При пересечении двух прямых получаются 2 вертикальных угла (равны друг другу) и два смежных (в сумме 180°). Углы равны 70°, 70°, 110°, 110°. 3) Если внешний угол равен 40°, то внутренний 180° - 40° = 140°. Второй угол равен 30°, а третий 180° - 140° - 30° = 10° 4) В равнобедренном треугольнике медиана - она же биссектриса и высота. Поэтому боковые стороны AB=BC, сторона BO общая, углы ABO=CBO. По 2 признаку равенства треугольников (2 стороны и угол) эти треугольники равны. 5) Углы прямоугольного треугольника A = 90°, C = 15°, B = 75°. Угол В делят на CBD = 15° и ABD = 60°. Значит, угол ADB = 90° - 60° = 30°. Катет против угла 30° равен половине гипотенузы. а) Значит, гипотенуза BD = AB*2 = 3*2 = 6 см. б) Треугольник BDC - равнобедренный с углами B = C = 15°, D = 150°. Стороны BD = DC = 6 см. По правилу треугольника, сторона BC должна быть меньше суммы двух других сторон. BC < BD + DC = 6 + 6 = 12 см.
1. Рисуем ∠ B =45°. Откладываем отрезки ВА=3 см и АD=7 cм Через точки В и D проводим паралелльные прямые до пересечения в точке C 2. Рисуем прямой угол A Откладываем на сторонах угла отрезки равные 4 и 8 см АВ=4 см ВD= 8 cм Проводим перпендикуляр из точки D. Строим отрезок DC= 4 cм Соединяем В и С
3, Проводим две взаимно перпендикулярные прямые. Диагонали ромба взаимно перпендикулярны и делятся в точке пересечения пополам. Откладываем от точки пересечения отрезки 4 и 4 влево и вправо и 2 и 2 вверх и вниз. См. рисунок
Площадь прямоугольного треу. считается как S=ab/2, а,b - катеты.
Найдём сначала другой катет:
16=4а/2
а=8,
По теореме Пифагорa найдём гипотензу: a^2+b^2=c^2
C^2=64-16=48
C=48*SRPT(3)
srpt - корень