хорда и два радиуса образуют равносторонний треугольник, так как
по условию хорда = радиусу
в равностороннем треугольнике все углы по 60 градусов, значит центральный угол =60
так как касательные перпендикулярнаы радиусам, значит углы между касательными и радиусами =90 град
при пересечении касательных образуется два отрезка, равных расстоянию от концов хорды до точки пересечения
два радиуса и два отрезка образуют четырехугольник с углами 60, 90,90 и неизвестным углом в точке пересечения <X
сумма углов четырехугольника 360 град , значит <X = 360-60-90-90 = 120 град
но при пересечении двух прямых образуются две пары вертикальных углов
два угла по 120 град
два угла по 60 град
ОТВЕТ улы, образующиеся при пересечении этих касательных 120;120;60;60
Прямая параллельная одной стороне треугольника делит его медиану проведенную к другой стороне в отношении 5:2 от вершины. В каком отношении эта прямая делит третью сторону треугольника?
Объяснение:
Введем обозначения как показано на чертеже: КР║АС , ВМ=МС=у, МР=х . По условию
. Необходимо найти
.
Т.к. АС║КР , то по т. о пропорциональных отрезках
или
(*) . По т. Менелая для ΔВАМ :
или
или
(**).
Приравняем правые части (*) и (**) :
или 2(у-х)=5х или
.
Вернемся к (**)
.
обозначим вершины призмы АВСДА1В1С1Д1 с сечением АА1С1С. Объем призмы вычисляется по формуле: V=Sосн×АА1. Для этого нужно найти площадь основания и высоту призмы. Площадь ромба вычисляется по формуле: Sосн=½×АС×ВД=½×5×8=20см².
Теперь найдём высоту призмы. Сечение призмы представляет собой прямоугольник, одной из сторон которого является искомая высота АА1=СС1 площадь которого 24см², и используя формулу площади найдём высоту: AA1=S÷AC=24÷8=3см
Теперь найдём объем призмы:
V=Sосн×АА1=20×3=60см³
ОТВЕТ: V=60см³
хорда и два радиуса, получается равносторонний треугольник, углы по 60 градусов
касательная перпендикулярна радиусу, значит
90-60=30
две касательные и хорда образуют треугольник
180-30-30=120