Вычислите периметр прямоугольника листа бумаги центр симметрии которого расположен на 5,43 дециметров от большей стороны,а 81,5 сантиметров от меньшей стороны
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.