Две прямые, параллельные третьей, параллельны. Доказательство.
Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана.
Теорема
Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. Доказательство.
Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана.
На основании теоремы доказывается:
Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
(Смотри рисунок). Дано: АВСД - трапеция ЕФ - средняя линия ЕФ1=12 ФФ1=6 угол 1=углу2 Найти S
Угол 1=углу3(как внутренние накрест лежащие при параллельных прямых ВС и АД и секущей ВД). Так как угол 3=углу2, то ΔВСД - равнобедренный и ВС=СД=АВ. ЕФ1 - средняя линия треугольника АВД ⇒ АД по свойству средней линии треугольника рана 2×12=24. ФФ1 - средняя линия треугольника ВСД ⇒ ВС=2×6=12. Значит СД и АВ равны 12. Найдем АН. ВС=НК=12. АН+КД=24-12=12. Так как трапеция равнобедренная, то АН=КД=12/2=6. Рассмотрим ΔАВН - прямоугольный. По теореме Пифагора ВН= Площадь трапеции - это средняя линя(которая равна 12+6=18)×высоту S=18×
низнаю
Объяснение:
низнаюллулуоокококококо