В треугольнике ABC все углы острые, а отрезки BT и BO -высота и медиана соответственно. Точки F и L лежат на лучах BT и BO соответственно так, что BT = TF и BO = OL. Найдите угол LAF, если∠BAC = 43°, а ∠BCA = 57°
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Для начала вспомним стандартный вид уравнения окружности:
, где r - радиус, - координаты центра окружности. Из данных уравнений следует, что координаты центра первой окружности (-3;1), или х1=-3, у1=1, а второй - (2;-2), или х2=2, у2=-2. Уравнение прямой можно составить, зная две точки этой прямой, по формуле:
Подставим наши значения х1,х2,у1,у2. Получим:
Или у=-0,6х-0,8, смотря какой вид прямой Вам больше нравится.
ответ: 3х+5у+4=0 или у=-0,6х-0,8 (это одна и та же прямая)
Если не сработал графический редактор, то обновите страницу
В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения)
В данном случае диагонали равны 30, 40 и 70 см.
По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон.
Здесь имеем "треугольник" и три длины, и 70=30+40.
Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней.
Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.