1) по формуле Герона
Полупериметр р=(10+10+12):2=16 см
S=√(p(p-a)(p-b)(p-c)=√(16*6*6*4)=√2304=48 см²
48=1/2 * 10 * h₁
h₁=9,6 см
48=1/2 * 12 * h₂
h₂=8 см.
2) по формуле Герона
Полупериметр р=(17+17+16):2=25 дм
S=√(p(p-a)(p-b)(p-c)=√(25*8*8*9)=√14400=120 дм²
120=1/2 * 17 * h₁
h₁=14 2/17 дм
120=1/2 * 16 * h₂
h₂=15 дм.
3) по формуле Герона
Полупериметр р=(4+13+15):2=16 дм
S=√(p(p-a)(p-b)(p-c)=√(16*12*3*1)=√576=24 дм²
24=1/2 * 4 * h₁
h₁=12 дм
48=1/2 * 13 * h₂
h₂=7 5/13 дм.
48=1/2 * 15 * h₃
h₃ = 6 6/7 дм.
Периметр прямоугольника вычисляют по формуле Р = 2(а +b), где a и b - его стороны.
Площадь прямоугольника вычисляют по формуле S = ab, где a и b - его стороны.
По условию Р = 22 см, S = 24 см². Найдем длины сторон прямоугольника.
Пусть одна из сторон прямоугольника х см, тогда вторая сторона прямоугольника будет равна Р : 2 - х = 22 : 2 - х = 11 - х (см). Т.к. площадь прямоугольника равна 24 см², то составим и решим уравнение:
х(11 - х) = 24,
11х - х² - 24 = 0,
-х² + 11х - 24 = 0,
х² - 11х + 24 =0,
D = (-11)² - 4 · 1 · 24 = 121 - 96 = 25; √25 = 5,
х₁ = (11 + 5)/(2 · 1) = 16/2 = 8,
х₂ = (11 - 5)/(2 · 1) = 6/2 = 3.
Значит, если одна из сторон прямоугольника равна 8 см, то вторая будет равна 11 - 8 = 3 (см); если же одна из сторон прямоугольника равна 3 см, то вторая будет равна 11 - 3 = 8 (см).
ответ: 3 см и 8 см.