Сторона равна 6√2 ед.
Объяснение:
Принимаем такое условие: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 4√(3/2)", так как в противном случае было бы: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 2√3.
В равностороннем треугольнике центр описанной окружности лежит на медиане, которая делится этим центром в отношении 2:1, считая от вершины. В равностороннем треугольнике медиана, высота и биссектриса совпадают. Следовательно, радиус описанной окружности нашего треугольника равен 2/3 высоты. Тогда высота равна 4√(3/2):(2/3) = 6√(3/2).
Пусть сторона треугольника равна 2х. По Пифагору:
(2х)² -х² = (6√(3/2))² => 3x²= 54 => х = 3√2 ед.
Сторона треугольника равна 6√2 ед.
Проверим формулой для правильного треугольника:
R = (√3/3)·a => a = R√3. В нашем случае:
а = 4√(3/2)·√3 = 12/√2 = 6√2 ед.
дан прямоугольник.
A B
Taisnsturu_skaits1.png
M H
Добавим ещё один прямоугольник так, что сторона BH обоих прямоугольников совпадает.
A B B1
Taisnsturu_skaits2.png
M H H1
Сколько прямоугольников нарисовано?
3
.
Добавим ещё один прямоугольник.
A B B1 B2
Taisnsturu_skaits3.png
M H H1 H2
Сколько прямоугольников нарисовано сейчас?
6
.
Допустим, что к данному первому прямоугольнику добавлено ещё 9 прямоугольников.
Посчитай, сколько всего прямоугольников нарисовано в этом случае.
Число прямоугольников:10