М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
stupidgirl3
stupidgirl3
28.04.2020 15:00 •  Геометрия

Отношение радиуса сферы описанной около правильной четырехугольной пирамиды к стороне основания равно √2 найдите угол наклона бокового ребра пирамиды к плоскости основания. ​

👇
Ответ:
polina3782
polina3782
28.04.2020
Чтобы решить эту задачу, нам понадобятся некоторые свойства правильной четырехугольной пирамиды и геометрические связи между ее элементами.

Давайте разберемся пошагово:

Шаг 1: Понимание пирамиды и ее элементов
Правильная четырехугольная пирамида - это пирамида, у которой основание является правильным четырехугольником, то есть все его стороны и углы равны.

Шаг 2: Понимание сферы, описанной около пирамиды
Сфера, описанная около пирамиды, это сфера, касающаяся всех вершин пирамиды. В этой задаче, радиус этой сферы обозначим как R.

Шаг 3: Отношение радиуса сферы к стороне основания пирамиды
В задаче сказано, что отношение радиуса сферы к стороне основания равно √2. Это можно записать следующим образом:
R : s = √2,
где s - сторона основания пирамиды.

Шаг 4: Нахождение стороны основания пирамиды
Чтобы найти угол наклона бокового ребра пирамиды к плоскости основания, нам сначала нужно найти сторону основания пирамиды, обозначим ее как s.

Для этого мы можем воспользоваться теоремой Пифагора для прямоугольного треугольника, образованного половиной диагонали основания пирамиды, радиусом сферы и боковым ребром пирамиды:
s^2 = R^2 + (0.5s)^2.

Шаг 4: Решение уравнения
Раскроем скобки и приведем подобные слагаемые:
s^2 = R^2 + 0.25s^2.
Упорядочим слагаемые:
0.75s^2 = R^2.
Разделим обе части уравнения на 0.75:
s^2 = (4/3)R^2.
Возьмем квадратный корень от обоих частей уравнения:
s = √((4/3)R^2).

Шаг 5: Нахождение угла наклона бокового ребра к плоскости основания
Теперь, у нас есть выражение для стороны основания пирамиды. Чтобы найти угол наклона бокового ребра к плоскости основания, нам понадобится некоторая геометрическая информация о пирамиде.

Рассмотрим треугольник, образованный боковым ребром пирамиды, высотой пирамиды и радиусом сферы. Это прямоугольный треугольник, так как радиус сферы является высотой пирамиды. У нас есть два известных катета: радиус сферы и боковое ребро пирамиды.

Тогда, используя тригонометрический тангенс, мы можем найти угол, обозначим его как α:
tan(α) = (боковое ребро) / (радиус сферы).
Тогда, подставим известные значения:
tan(α) = s / R.
Теперь, возьмем обратный тангенс от обеих частей уравнения:
α = atan(s / R).

Шаг 6: Вычисление численного значения угла
Теперь, у нас есть уравнение для нахождения угла наклона бокового ребра к плоскости основания, где s - сторона основания пирамиды, и R - радиус сферы.

Чтобы вычислить численное значение угла, вам нужны конкретные значения для s и R. Если в задаче не указаны конкретные значения, то вам нужно будет использовать общую формулу и выразить угол через s и R.

В итоге, после решения уравнения и подставления известных значений стороны основания пирамиды и радиуса сферы, вы найдете угол наклона бокового ребра пирамиды к плоскости основания.
4,4(22 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ