1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Т.к. АВСД - ромб, то у него все стороны равны, диагонали пересекаются под прямым углом и в точке пересечения делятся по-полам. АО=ОС; ВО=ОД=3см (6/2).
Прямая ОК перпендикулярна плоскости, значит и перпендикулярна всем прямым на этой плоскости. ОК перпендикулярна прямым ВД и АС.
Рассмотрим треугольник АОВ - прямоугольный. По теореме Пифагора
АО= sqrt(АВ^2- ВО^2)=sqrt(25-9)=4см
Опускаем наклонные из точки К к прямым АО и ВО.
Из треугольника АОК- прямоугольного по теореме Пифагора АК=sqrt(64+16)=sqrt(80)= 4sqrt(5)/
Из треугольника ВКО - прямоугольного, ВК= sqrt(64+9)=sqrt(73) см
ОТВЕТ:sqrt(80); sqrt(73).
CADILAK ETO NOVY CADDILAK DELAY DENGI DELAI DENGI