Объем наклонного параллелепипеда можновычислить по формуле
V=Sосн.·H(высота параллелепипеда)
V=Sсеч.перпендикулярного боковому ребру·Lдлина бокового ребра.
Решаем по второй формуле.
Рассмотрим основание-ромб. ∠ADC=2∠BAD .Сумма углов в ромбе равна 360°, и противоположные углы равны. Выразим сумму углов ромба через ∠BAD.
2∠ADC+2∠BAD=2·2∠BAD+2∠BAD=6∠DAD -сумма углов в ромбе. Вычислим ∠BAD:
6∠BAD=360°
∠BAD=360°:6=60°.
∠DAC=2·60°=120°.
BD- диагональ ромба и лежит против угла в 60°. эта же диагональ делит угол 120° пополам (свойство диагоналей ромба), следовательно ΔABD- равносторонний.
BD=4 cm (по условию), AD=AB=BD=4 cm.
Построим сечение перпендикулярное к ребру AA₁. Продлим ребро CC₁ вниз..
Из точек B и D опустим перпендикуляры на ребра AA₁ и CC₁.На ребре АА₁ пересекутся в точке, назовем ее F, на ребре СС₁ пересекутся в точке, назовем ее K.
Получили сечение DFBK, перпендикулярное к боковым ребрам.
∠FAD=∠FAB=45°, AD=AB, ∠AFD=∠AFB=90°, ⇒ΔAFD=ΔAFB и точка F -общая точка.)
Рассмотрим ΔAFD. ∠AFD=90°,∠FAD=45°,⇒∠ADF=45°, треугольник равнобедреный и AF=FD. AD=4cm,
AD²=AF²+FD², AD²=2FD², 4²=2FD², FD²=16/2=8, FD=√8=2√2 cm
ΔAFD=ΔAFB=ΔDKB=ΔBKC=ΔDKC⇒FB=FD=KC=KD, pyfxbn d ct
Подробнее - на -
Объяснение:
На РУССКОМ: Причиной смены времён года является наклон земной оси по отношению к плоскости эклиптики и вращение Земли вокруг Солнца. ... Зимой дни становятся короче, а положение Солнца в полдень — ниже, чем в Южном полушарии, где в это время лето. Спустя полгода Земля переходит на противоположную точку своей орбиты.
На Казахском:
Жыл мезгілдерінің ауысуының себебі - жер осінің эклиптика жазықтығына қарай қисаюы және жердің Күнді айналуы. ... Қыста күндер қысқарады, ал күннің түске қарай орналасуы жаз болатын Оңтүстік жарты шардағыдан төмен. Алты айдан кейін Жер өз орбитасының қарама-қарсы нүктесіне ауысады
Обозначим данные прямые через l0 и l, данные точки на прямой l0 - через A0, B0, C0, данные точки на прямой l - через A, B, C. Пусть l1 - произвольная прямая, не проходящая через точку A. Возьмем произвольную точку O0, не лежащую на прямых l0 и l1. Обозначим через P0 центральное проектирование прямой l0 на прямую l1 с центром в точке O0, а через A1, B1, C1 - проекции точек A0, B0, C0. Пусть l2 - произвольная прямая, проходящая через точку A, не совпадающая с прямой l и не проходящая через A1. Возьмем некоторую точку O1 на прямой AA1 и рассмотрим центральное проектирование P1 прямой l1 на l2 с центром в O1. Обозначим через A2, B2, C2 проекции точек A1, B1, C1. Ясно, что A2 совпадает с A. Наконец, пусть P2 - проектирование прямой l2 на прямую l, которое в том случае, когда прямые BB2 и CC2 не параллельны, является центральным проектированием с центром в точке пересечения этих прямых, а в том случае, когда прямые BB2 и CC2 параллельны, является параллельным проектированием вдоль одной из этих прямых. Композиция P2°P1°P0 является требуемым проективным преобразованием.
Объяснение:
пример