В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
Возьмем точки А и В так, чтобы XKNA и XLMB были параллелограммами и продлим XY за точку Y на свою длину до точки С (см. рис). Треугольник ANY равен треугольнику BMY по двум сторонам и углу между ними (AN=XK=XL=BM, NY=MY и ∠ANY=∠BMY как внутренние накрест лежащие, т.к. АN||KL||MB и MN - секущая). Значит AY=BY, т.е. AXBC - параллелограмм. Тогда ∠KVX=∠AXY=∠XCB, ∠LWX=∠BXC, BC=XA=KN и BX=LM, а т.к. по условию LM<KN, то BX<BС. Т.к. в любом треугольнике (в том числе XCB) напротив меньшей стороны лежит меньший угол, то ∠XCB<∠BXC, а значит и ∠KVX<∠LWX.
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
S AMD=[AC•CD:2]:2=4•3:4=3 см²