М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikita577344
nikita577344
23.08.2022 10:18 •  Геометрия

Розвязування задач за готовим рисунками


Розвязування задач за готовим рисунками

👇
Ответ:
abarzenkov
abarzenkov
23.08.2022

ЭЭМ 2

Объяснение:

ПОТОМУ ЧТО

4,4(92 оценок)
Открыть все ответы
Ответ:
olezhkash228
olezhkash228
23.08.2022

1.

AC = 8,5 - 4,6 = 3,9 см.

AB - весь отрезок.

AC - часть отрезка.

BC - часть отрезка.

2.

угол CBD = углу ABC = 25°

угол ABD = CBD + ABC = 25° + 25° = 50°

3.

второй угол = 180° - первый угол = 180° - 114° = 66°

4.

P треугольника = 6 + 6 + 4 = 16 см.

5.

1) Рассмотрим треугольник АВС

По теореме о сумме углов треугольника найдем угол В.

Угол В = 180° - угол А - угол С = 180° - 80° - 40° = 60°

2) Угол ВМK = углу А (соответственные при МК || АС и секущей АВ)

Угол ВМK = 80°

3) Угол ВМN = углу MKN (т.к. MN  - биссектриса угла ВМК)

Угол ВМN = углу MKN = 80° : 2 = 40°

4) Рассмотрим треугольник ВМN

По теореме о сумме углов треугольника найдем угол МNВ.

Угол MNB = 180° - угол В - угол ВМN = 180° - 60° - 40° = 80°

5) Сумма углов MNB и MNK равна 180°, т.к. они смешные.

Отсюда угол MNK = 180° - угол MNB = 180° - 80° = 100°

ответ: угол MNK = 100°

6.

Угол ДАС = углу ЕСА ( углы при основании ровнобедреного тркугольника АВС )

Угол ЕАС = углу ДСА ( Угол ДАС = углу ЕСА, а АЕ и СД - биссектрисы этих углов )

АС - общая сторона - из всего выше изложеного делаем вывод что треугольник АДС = треугольнику СЕА ( по стороне и двум прилегающим к ней углам )

7.

Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.

Пусть угол С=2х°, угол КАВ=5х°, угол В=90°,  тогда 2х+90=5х

3х=90;  х=30

угол С=30:2=60°;  угол А=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°

Катет ВС лежит против угла 30°, следовательно, он равен половине гипотенузы АС

АС=2ВС=12 см.

4,6(30 оценок)
Ответ:
lerastorogeva
lerastorogeva
23.08.2022

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ