Доброго времени суток!
Как я поняла, вопрос был поставлен таков : "Стороны равнобедренного треугольника пропорциональны числам 1, 1, √2. Докажите, что этот треугольник — прямоугольный".
если это не так, то сообщите об этом в комментариях.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Дано:ΔАВС — равнобедренный (АВ = ВС).
АВ : ВС : АС = 1 : 1 : √2.
Доказать:ΔАВС — прямоугольный.
Доказательство:▸Теорема, обратная теореме Пифагора — если квадрат большей стороны треугольника равен сумме квадратов других сторон, то такой треугольник — прямоугольный◂
Итак, пусть АВ = ВС = х, тогда, по условию задачи, АС = х√2.
Составим уравнение и проверим его на верность —
Итак, мы выяснили, что сумма квадратов меньших сторон равна квадрату большей стороны. Поэтому, по обратной теореме Пифагора, равнобедренный ΔАВС — прямоугольный.
ответ:что требовалось доказать.
В параллелограмме точка пересечения диагоналей делит их пополам. Найдем координаты этой точки, разделив вектор АС пополам (сумма координат начала и конца, деленная пополам):
О(2;-1;2).
А теперь находим координаты вершины D, зная координаты начала вектора ВD (точки В) и его середины (точки О).
2=(Хd-5)/2, отсюда Хd=9.
-1=(Yd+3)/2, откуда Yd=-5.
2=(Zd-2)/2, отсюда Zd=6.
Итак, координаты вершины D равны D(9;-5;6).
ответ: D(9;-5;6).