Сейчас : ) площадь полной поверхности (sполн) равна 36. решение: sполн = 4sграни + 2sоснования. грани в прямой призме с основанием в виде ромба равны. sграни=h*a=3а, где а - сторона ромба. sоснования=2*sтреугольника. sтреугольника=(а*h)/2, так как треугольник с углом 60 град - равносторонний. далее sоснования=2*(a*h)/2=a*h=3а=sграни; sполн = 4sграни + 2sграни = 6sграни = 6*3*а= 18*а. теперь осталось найти а. рассмотрим равносторонний треугольник (половина основания призмы).найдём высоту: h=(2√3)/2; теперь рассмотрим прямоугольный треугольник (половина основания призмы) и найдём а. cos(60град/2)=((2√3)/2)/а, отсюда √3/2=√3/а, а=2. подставляем в формулу sполн = 18*2 =36
Если трапецию можно вписать в окружность, то значит трапеция – равнобедренная. В равнобедренной трапеции боковые стороны АВ и СД равны, а также углы при любом основании равны. Значит угол В = углу С=120°, а угол А = углу Д=180-120=60° Угол АВД является вписанным и опирается на диаметр АД, значит он прямой Из прямоугольного треугольника АВН (ВН=6 - высота трапеции) найдем боковую сторону АВ АВ=ВН/sin 60=12/√3=4√3 АН=ВН/tg 60=6/√3=2√3 Из прямоугольного треугольника АВД найдем нижнее основание АД АД=АВ/cos 60=8√3 диагональ ВД=АВ*tg 60=4√3*√3=12 В равнобедренной трапеции меньшее основание ВС=АД-2АН=8√3-2*2√3=4√3 Получилось, что треугольник ВСД - равнобедренный. Найдем радиус описанной окружности около него через площадь S=1/2*ВС*ВД*sin (120-90)=1/2*4√3*12*1/2=12√3 R=ВС*СД*ВД/4S=4√3*4√3*12/4*12√3=4√3