Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -
Пусть К - точка пересечения хорды AC и диаметра BD.
OK=KB=R\2
OA=OB=OC=OD=R=AB=BC
AD=BD=корень((корень(3)*R\2)^2+(3*R\2)^2)=корень(3)*R
AK=BK=корень(3)\2*R
cos (KOA)=(R\2)\R=1\2
угол KOA=угол OBA=угол OBC=60 градусов
угол ФИС=60+60=120 градусов
В выпуклом вписанном четырёхугольнике сумма противоположных углов равна 180
поэтому угол ADB=180-120=60 градусов
Угол BAD= углу BCD=180\2=90 градусов
градусные меры дуг AB, BC, CD, AD... соотвественно равны углвой мере углов AOB(=60 градусов), BOC (=60 градусов), COD(180-60=120 градусов)
AOD (=120 градусов)
периметр равен 3а
42√3=3а
а=14 корней из 3 см.
радиус= корень из 3 деленное на 6а= корень из 3 деленное на 6а * на 14 корней из 3 =7
периметр=2 пи эр
периметр=2пи * 7=14 пи или 49,38
Должно быть правильным:)