Плоскость ABC=ABCD. Проекция CB1D1 на ABCD,не что иное как треугольник CBD . Тогда если b-угол между плоскостями ABC и CB1D1,то cos(b)=S(CBD)/S(CB1D1) S-площадь. Пусть сторона куба равна a,тогда величина диагонали равна :a*√2 (Из теоремы Пифагора). Очевидно,что треугольник :CB1D1-равносторонний,со стороной a*√2. А треугольник CBD-прямоугольно-равнобедренный ,с величиной катета a. S(CB1D1)=( (a*√2)^2 *√3) )/4 = = ( a^2*√3)/2 S(CBD)=a^2/2. Откуда : cos(b)=(a^2/2)/ ( (a^2*√3)/2)= =1/√3=√3/3. b=arccos(√3/3). P.S кто то очень умный,скажет что этот угол можно точно посчитать,а вот и нет,это можно было бы посчитать,только для тангенса.
авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6