Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
Поскольку АС - биссектриса, то угол ВАС = углу САD. ABCD - трапеция, следовательно BC параллельно AD, следовательно углы ВСА и CAD равны, т.к. являютс накрест-лежащими при секущей АС. В итоге угол ВАС = CAD = ВСА = x. т.к. ВАС = ВСА, то треугольник АВС - равнобедренный, сумма его углов = 180 + x + х, отсюда угол АВС = 180 - 2x. Угол BAD = 2х. Угол ВСD = 87 + x. Угол СDA = углу ВАD(т.к. трапеция равнобедренная) = 2x. Сумма всех углов трапеции равна 360 градусов. Составим уравнение, где приравняем сумму всех углов к 360. BAD + ABC + BCD + CDA = 360 2x + ( 180 - 2x) + (x+87) + 2x = 360 3x + 267 = 360 3x= 360-267=93 x=31 Большими углами данной трапеции является угол АВС и угол BCD, поэтому х можно подставить либо в формулу АВС = 180 - 2х либо в формулу BCD = 87 + x. И там и там ответ получится одинаковый. Подставим, например, в АВС: АВС = 180 - 2*х= 180 - 2*31= 180 - 62= 118 градусов. ОТВЕТ: 118 градусов.