Рассмотрим горизонтальную проекцию пирамиды. Пирамида правильная значит в основании правильный треугольник со стороной 4, и в сечении также правильный треуголник со стороной 1. Построим равносторонний треугольник АВС со стороной 4, затем в центре его параллельно сторонам первого треугольника построим треугольник MFN со стороной 1. Проведём боковые рёбра пирамиды АМ, BF,CN. Проведём высоту большего основания ВД. Отметим на ней точку О центр вписанной окружности. В неё проецируется вершина пирамиды О1. Причём , в правильном треугольнике ДО=1/3ВД=1/3*(( корень из( 16-4))=1,15. Боковая грань АМNC равнобедренная трапеция . Проведём в ней высоту NQ=КД=корень из (4-1,5)=1,32(по теореме Пифагора). Точка К расположена на пересечении MN и ВД. В плоскости перпендикулярной АВС и проходящей через ВД получим трапецию ДКFB. Точка О лежит на ДВ. Восстановим из неё перпендикуляр до пересечения с продолжением АК в точке О1. ДО1=1,76 найдём из подобия треугольников. Из точки К опустим перпендикуляр KG на ДВ. cos О1ДО=ДО/ДО1=0,653. Отсюда sin О1ДО=0,764.Тогда Н=KG=КД*sin О1ДО=1,32*0, 764=1,0.
а=24/4=6 см, боковое ребро ⊥ основанию и равно 10,
площадь полной поверхности призмы равна Sбок+2Sосн, Sбок = 10*4а=
10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36=
240+72=312 см²,
основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°,
Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см²,
боковое ребро ⊥ основанию и равно 10 см, т е
Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3,
сравним площади полных поверхностей этих призм:
312=240+72 > 240+32√3, (√3 < 2) , т е у нас полная поверхность
четырехугольной призмы больше треугольной