Обозначим трапецию ABCD AD - нижнее основание, BC - верхнее основание. Пусть AD=a, BC=b. Высота из точки С опущена на основание AD. Пусть СO - высота трапеции. Т.к. трапеция равнобедренная, то есть AB=CD, а ее диагонали пересекаются под прямым углом, то диагонали AC=BD, а углы ВDA и CAD=45 градусов. Рассмотрим треугольник CAO. Он прямоугольный, а так как угол CAD=45 градусов, то угол ACO=45 градусов и CO=AO. Найдем чему равно AO: AO=AD-OD Так как трапеция равнобокая, то OD=(AD-BC)/2=(a-b)/2AO=AD-OD=a-(a-b)/2=(a+b)/2 (а это и есть формула средней линии), то естьAO=CO=19см ответ: 19 см.
1) Пусть ABCD - прямоугольная трапеция, в которую вписана окружность. CF=4 см и FD=25 см. 2) Площадь трапеции можно найти по формуле: S=(AD+BC)*AB/2, где AD и BC - основания трапеции, AB - высота трапеции. 3) Можно использовать следующее свойство для прямоугольной трапеции, в которую вписана окружность: Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен r=√(mn). Находим радиус вписанной окружности: r=√(4*25)=√100=10 (см). Значит, высота АВ=2r=2*10=20 (см). 4) Так как центр вписанной окружности является точкой пересечения биссектрис углов трапеции, то KC=CF=4 см, FD=DE=25 см. 5) AMOE=MBKO - квадраты со стороной, равной радиусу вписанной окружности, т.е. AE=BK=10 см. Таким образом, получаем, AD=10+25=35 (см), BC=10+4=14 (см). 6) Находим площадь трапеции: S=(AD+BC)*AB/2=(35+14)*20/2=49*10=490 (cм²).
Еще площадь прямоугольной трапеции, в которую вписана окружность можно найти по отдельной формуле: S=AD*BC (произведение оснований). S=35*14=490 (см²). ответ: 490 см².
AD - нижнее основание, BC - верхнее основание.
Пусть AD=a, BC=b.
Высота из точки С опущена на основание AD.
Пусть СO - высота трапеции.
Т.к. трапеция равнобедренная, то есть AB=CD, а ее диагонали пересекаются под прямым углом, то диагонали AC=BD, а углы ВDA и CAD=45 градусов. Рассмотрим треугольник CAO. Он прямоугольный, а так как угол CAD=45 градусов, то угол ACO=45 градусов и CO=AO. Найдем чему равно AO:
AO=AD-OD
Так как трапеция равнобокая, то OD=(AD-BC)/2=(a-b)/2AO=AD-OD=a-(a-b)/2=(a+b)/2 (а это и есть формула средней линии),
то естьAO=CO=19см
ответ: 19 см.