пусть боковая сторона будет х тогда основание будет х + 5.
По теореме Пифагора
h^2 = x^2 - ((x + 5 )/2)^2 h = 20 Умножим обе части уравнения на 4
4*20^2 = 4x^2 - x^2 - 10x - 25 = 0
3x^2 - 10x - 1625 = 0
D = b^2 - 4ac = 10^2 - 4*3*(-1625) = 100 + 19500 = 19600 > 0
x_1 = (-b + VD)/2a = (10 + V19600)/2*3 = (10 +140)/6 = 25
x_2 = (-b - VD)/2a = (10 - 140)/6 = -130/6 < 0 посторонний корень
25 + 5 = 30 основание треугольника.
ответ. 30
Если стороны BC = а (считаем эту сторону основанием), AC = b и AB = c, то периметр равен 2*p = (a + b +c);
Отрезок PQ = t = 2,4; точка Р на стороне b, Q на стороне c.
Точки касания вписанной окружности стороны ВС - точка M, стороны АС - точка К, стороны АВ - точка Е.
Точка касания вписанной окружности отрезком PQ - точка Т.
Если обозначить отрезки от вершин до точек касания ВЕ = ВМ = x, СК = СМ = y и АК = АЕ = z, то
a = x + y;
b = x + z;
c = y + z;
Периметр меньшего треугольника (который отсечен заданным отрезком касательной) равен 2*z, поскольку РК = РТ; и QE = QT.
Отсюда легко видеть, что ПОЛУпериметр отсеченного треугольника равен p - a; (по условию, р = 10)
Поскольку эти треугольники подобны (исходный и отсеченный отрезком касательной), то ПОЛУпериметры относятся так же как стороны, и
(p - a)/p = t/a;
(10 - a)/10 = 2,4/a;
это легко привести к виду
a^2 - 10*a + 24 = 0;
a = 4 или 6.
Получилось 2 решения. :(