М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
akimdoge
akimdoge
24.08.2020 16:14 •  Геометрия

Чи паралельні прямі a i b на рісунку 43 ? Відповідь обґрунтуйте

👇
Открыть все ответы
Ответ:
dimao2003
dimao2003
24.08.2020
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.

Дано: ∠А = ∠А₁; АВ : А₁В₁  =  АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁  =  АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
4,8(10 оценок)
Ответ:
revenko816mailru
revenko816mailru
24.08.2020

Стороны данного треугольника равны 15 см, 20 см, 30 см. Найдите стороны треугольника с периметром 26 см, подобного данному треугольнику. Покажите, что отношение площадей треугольников ABC и A1B1C1 равно (3)

Объяснение:

Т.к. стороны ΔАВС  равны 15 см, 20 см, 30 см , то отношение этих сторон  3:4:6. Такое же отношение сторон будет и в подобном ΔА₁В₁С₁.

Пусть одна часть сторон ΔА₁В₁С₁ будет х  , тогда длина сторон будет равна 3х, 4х,6х.

Т.к. Р(А₁В₁С₁) =26 см , то  3х+ 4х +6х =26 , х=2.

Тогда стороны  ΔА₁В₁С₁  такие 6 см ,8 см ,12 см.

Найдем коэффициент подобия  к= \frac{15}{6} =\frac{5}{2} .

По т. об отношении площадей  \frac{S(ABC)}{S(A_{1}B_{1} C_{1} ) } =k^{2}   ,получаем

\frac{S(ABC)}{S(A_{1}B_{1} C_{1} ) } =( \frac{x}{y} )^{2}=\frac{25}{4} .

А 3 не получается.

4,7(82 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ