1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
Удачи и здоровья!
Объяснение:
1)
Рисунок а.
Проведём две высоты ВМ и СК.
ВМ=АМ, так как ∆АВМ- прямоугольный, равнобедренный
cos45°=AM/AB
√2/2=AM/8
AM=8√2/2=4√2 см.
ВМ=4√2 см.
СК=ВМ=4√2 см.
∆СКD- прямоугольный треугольник.
СD- гипотенуза.
СК и KD- катеты
По теореме Пифагора найдем
КD²=CD²-CK²=6²-(4√2)²=36-32=4см
КD=√4=2 см.
МК=AD-AM-KD=16-4√2-2=14-4√2 см.
МК=ВС=14-4√2см.
S(ABCD)=BM*(BC+AD)/2=4√2(16+14-4√2)/2=
=2√2(30-4√2)=60√2-16 см².
ответ: 60√2-16см²
2) Рисунок б
Проведём высоту СК.
cos30°=KD/CD
√3/2=KD/8
KD=8√3/2=4√3 см
sin30°=CK/CD
1/2=CK/8
CK=8/2=4см высота трапеции.
BC=AD-KD=6√3-4√3=2√3 см.
S(ABCD)=CK(BC+AD)/2=4*(2√3+6√3)/2=
=2*8√3=16√3 см²
ответ: 16√3см²