Дано АВСД - ромб ВН перпендикулярно АД АН=НД ВД=12 Найти углы А,В,С.Д и Р авсд Решение Рассмотрим треугольник АВД. Так как высота ВН делит его основание пополам - треугольник равнобедренный ( боковые стороны равны) АД=ВД=12. У ромба все стороны равны АВ=ВС=СД=АД=12 см Периметр равен сумме всех сторон т.е. 48 см. Рассмотрим треугольник АВН - прямоугольный АН= 1/2 гипотенузы АВ. следовательно угол АВН = 30 градусов. угол А= 180-30-90=60 Сумма углов при основании параллелограмма равна 180 угол Д=120. Противоположные углы равны. угол А=углу С=60 угол Д=углу В=120
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.